G12 PedalVision

Ayesha Arif (EE)
Brian Boga (EE)
Kevin Leone (CPE)
Jose Ramirez (EE)

Project Overview

Responsibilities

	Primary	Secondary
Analog Effects	Jose	Ayesha
Digital Effects	Kevin	Jose
LED System	Brian	Kevin
Power Supply	Ayesha	Brian

Motivation / Objectives

1. Alternative to full digital unit
2. Alternative for expensive single analog effect
3. Remove user creative limitation due to digital effect programmability
4. Practice or performances will be more interesting an engaging with LED matrix feedback display
5. More portable and less expensive

Requirement Specifications

- Analog effects
- Input impedance of at least 500K
- Output impedance of no more than 10K
- Bypass full frequency response from $20 \mathrm{~Hz}-20$ KHz
- Knobs to adjust volume, drive, and tone
- Foot controls to toggle effect on and off
- Digital effects
- DSP chip/microcontroller
- LCD User interface
- Knobs for adjusting digital values
- Foot control to toggle effect on and off
- LED display
- Microcontroller for LED matrix operations
- Multiple modes of operation
- Size, Weight, Cost
- No more than 30 lbs
- No larger than 15
- \$300 limit for audio
- \$200 limit for LED system

Analog Effects

- Order matters
- Why?

Input Buffer/ External Effects Interface

- Unity gain buffer implemented using op amp
- Simple implementation
- Low part count
- Why not Emitter Follower Transistor buffer?

Op amp selection

- Why OPA164x?

Op Amp Model	Input Impedance	Output Impedance @1k	Gain Bandwidth Product	Input Voltage Noise @ 1KHz	Total Harmonic Distortion	Price
TL07xx	$10^{\wedge} 12 \Omega$	Not in data sheet	3 MHz	$18 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$	0.003\%	Not considered
OPA827	$10^{\wedge} 13 \Omega$	20Ω	22 MHz	$4 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$	0.00004\%	\$10.13
OPA164x	$10^{\wedge} 13 \Omega$	10Ω	11 MHz	$5.1 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$	0.00005\%	\$2.88

Compression

- LM13700
- Amplify softer signal
- "Compress" larger signal
- Add sustain

Compression

Distortion and Overdrive

- Both use diodes to create clipping
- Symmetric vs Asymmetric clipping
- Why two amplification stages?

Distortion

- Distortion at any volume level
- Hard clipping
- Adds some compression

Simplified Distortion Outputs

High Gain

Actual Distortion Circuit Output

Overdrive

- More distortion as volume level increase
- Soft Clipping
- Can be used as a volume boost after other distortion effects

Simplified Overdrive Outputs

Actual Overdrive Circuit Output

Tone Stack

- Tone adjustment
- Versatile with only two controls

	Bass Control Position	Treble Control Position
Highpass	0	10
Lowpass	10	0
Mid boost	0	0
Mid Scoop	10	10
Flat band	5	5

Tone Stack Simulation Frequency Sweep

- Flat Band

Tone Stack Simulation Frequency Sweep

- Mid Boost

Tone Stack Simulation Frequency Sweep

- Mid Scoop

Tone Stack Simulation Frequency Sweep

- Highpass

Tone Stack Simulation Frequency Sweep

- Lowpass

Results so far

- Successes
- All effects have been implemented and function as expected.
- All effects have been sound tested.
- Issues
- Compression circuit has audible popping sound at output even when instrument is muted.
- Tonestack may need a volume boost

Digital Effects - Design Approach

- Two digital effect chips (dependent on size and cost of product)
- Allows for more customizability for user

Digital Design Approach - Choices

- Delay Based Effects
- Echo/Delay
- Crisp echoing effect
- Reverb
- Spacious and full sound
- Flanger

- Jet like flanging adds dimension
- How to make these effects
- Use delay lines in a comb filter

Digital Design Approach - Echo

- Used to create a copy of the input and delay it slightly
- Depth continues to decrease the impact of the copy the longer it continues
- Controls
- Delay
- Feedback
- Level

Echo Block Diagram

Digital Design Approach - Reverb

- Used to give the output sound the as if it was recorded in a large room
- Achieved by overlaying multiple delays with comb filters, then passing through allpass filters.
- Controls
- Decay
- Tone
- Level

Schroeder Reverb Block Diagram

Digital Design Approach - Flanger

- Used to create a unique sweeping spacelike sound.
- Function: $\mathrm{y}(\mathrm{n})=\mathrm{x}(\mathrm{n})+\mathrm{d}^{*} \mathrm{x}(\mathrm{n}-\mathrm{M}(\mathrm{x}))$
- y: Output Signal
- x: Input Signal
- d: depth
- n : sample time step
- M: Length of delay line
- Controls
- Delay
- Depth
- Level

FeedForward Comb filter

Digital Design Approach - Interface

- Very simple user interface
- Benefits users who want to change effects quickly between songs
- Anyone can easily use
- Potentiometers for parameter changes
- Button for cycling/choosing effect

- I2C connection to LCD display

Digital Effects - Component Decision

TMS320C6720

- Pros
- High Speed/Quality
- Faster and more accurate calculations
- Cons
- High Cost Dev Board
- High risk w/o dev board
- Harder to code
- Little documentation for guitar effects
- Requires JTAG programmability

STM32F405ZGT6 (Hoxton Owl Based)

- Pros
- Lots of documentation (HW \& SW)
- Cheaper Dev board for testing
- Open source
- ARM based DSP libraries
- USB programmability
- Owl Firmware
- Cons
- Slower/lower quality

Digital Effects - Components

- STM32F405ZGT6 ARM Cortex M4 32bit
- Up to 168 Mhz
- Floating Point unit
- On chip memory
- Flash 512 MB
- SRAM 192 kB
- 15 Communication interfaces
- Serial wire debug interface
- Low power operation
- Compatible with all ARM tools (including dsp libraries)

life.augmented

Digital Effects - OWL Digital

- Open source
- Software
- Hardware
- Bootloader available for custom builds
- Helpful community
- Users will not be limited to the effects we create.
- Online effect library and compiler

Digital Effects - Components

- SD Ram - IS61WV51216BLL-10TLI
- Used to hold program memory
- Also used for storing samples for effects
- 8 MB
- 10 nS access time
- 100 MHz

- ADC/DAC - WM8731
- ADC: Converts input signal from analog effects to digital values
- DAC: Converts digital values back to an analog signal
- 24 bit Sigma-Delta
- Supported 8 kHz to 96 kHz

Digital Effects - Components

- Atmega328p
- Drive the LCD display
- Handle user interface controls
- Display loaded effect and value

- LCD Display
- 20x4 characters

Digital Effects - Schematics

Digital Effects - Schematics

Digital Effects - Difficulties

- Change of chip due to complications
- Waiting for shipping of parts
- Overall Cost

LED Matrix Feedback Display (LED MFD)

- General goals
- Read a frequency and amplitude of an input analog signal
- Display frequency as a color
- Display amplitude as a brightness to the color
- Introduce another way to enjoy the music you are playing

MCU

	Flash	EEPROM	RAM	Genral Purpose i/o	16-bit PWM	ADC Channels	Cost
ATMEGA328	32 KB	1 KB	2 KB	23	6	8	$\$ 1.38$
ATMEGA2560	256 KB	4 KB	8 KB	86	12	16	$\$ 12.35$
ATMEGA2561	256 KB	4 KB	8 KB	54	6	8	$\$ 12.07$

TLC5955: LED constant current driver

- 48-channel constant current output
- 281 trillion unique colors available
- 128 step current control per output
- $2 \mathrm{~mA}-31 \mathrm{~mA}$
- Fault flags
- GSCLK of 33 MHz
- SCLK speed of 25 MHz
- Ability to be daisy-chained

PCM3060: Analog to Digital Converter

- 24-bit ADC resolution
- Sampling rate of $16-96 \mathrm{KHz}$
- Ability to communicate through...
- 3-wire SPI
- 2-wire I2C
- SMD
- Con: Wasted pins
- It wasfree

	$\begin{aligned} & \text { PCM3060 } \\ & \text { PW (TSSOP) PACKAGE } \\ & \text { (TOP VIEW) } \end{aligned}$		
MC/SCL/FMT \square	10	28	\square MODE
MD/SDA/DEMP \square	2	27	$\square \overline{\text { MS/ADR/IFMD }}$
DOUT \square	3	26	$\square \mathrm{V}_{1 \times} \mathrm{R}$
LRCK1 \square^{\square}	4	25	$\square \mathrm{V}_{\text {IN }} \mathrm{L}$
BCK1 \square	5	24	$\square \mathrm{V}_{\mathrm{cc}}$
SCKI1 \square	6	23	\square AGND1
$\mathrm{V}_{\mathrm{DD}} \square$	7	22	\square AGND2
DGND \square	8	21	$\square \mathrm{V}_{\text {сом }}$
SCKI2 \square	9	20	$\square \mathrm{V}_{\text {OUT }} \mathrm{L}^{+}$
BCK2 \square	10	19	$\square \mathrm{V}_{\text {Out }} \mathrm{L}$
LRCK2 \square	11	18	$\square \mathrm{V}_{\text {OUT }} \mathrm{R}^{+}$
DIN \square	12	17.	$\square \mathrm{V}_{\text {out }} \mathrm{R}-$
ZEROR \square	13	16	\square SGND
ZEROL \square	14	15	$\square \overline{\mathrm{RST}}$

Kingsbright RGB LED

Photo	Part Number / Description	Wavelength / Color	Luminous Intensity			Viewing Angle
			Min.	Typ.	Unit	
	AAA3528BGRS/129/C3 3.5X2.8MM RGB SMD LED	$\begin{aligned} & 470 \mathrm{~nm} \\ & 525 \mathrm{~nm} \\ & 621 \mathrm{~nm} \end{aligned}$	$\begin{gathered} 200 \\ 1000 \\ 120 \end{gathered}$	$\begin{gathered} 330 \\ 1600 \\ 220 \end{gathered}$	mcd $@ 20 \mathrm{~mA}$	120°

- 20 mA of current draw
- SMD
- Small in size
- Large viewing angle
- Cost: $\$ 0.38$ a unit

Design of LED MFD

Color Theory

- There will be 12 unique colors reserved for each of the 12 major notes recognized
- These frequencies are centered around the $\mathrm{A} 4=440 \mathrm{~Hz}$ idea
- Amplitude of input signal will determine brightness of color

Display Modes

- Four display modes are currently being worked on
- More modes can be added post production

Display Modes: Tuning mode

- The note being played read will be displayed
- Color will correlate with how far from the center of the frequency the user is
- Can be used during normal playing or during tuning

Figure 1

Display Modes: Unison mode

- All 64 of the LEDs change in unison to the same value

Display Modes: Segmented mode

- Each column from the left to the right changes in unison moving in time from left to right

Display Modes: Continuous mode

- Each LED holds it's own value in time shifting in from the top left most LED
- The values shift to the right and then down one row adjusting to the left most LED when it reaches the

 farthest right it can go

Testing

- Created a breakout board
- Helped us understand our soldering limitations further
- Allowed for testing of individual components
- Allowed for testing of integration of components

LED MFD Current Problems

- Timing
- Time needed to capture frequency, interpret frequency, create lighting specific array and finally to output values in a time that isn't noticeable
- Fast Frequency calculation
- Accuracy of those readings
- Efficient Coding of Display Modes
- Analog to digital converter

Design approach

- 1st idea: All inclusive

PCB

- 2nd idea: Separate power PCB from analog and digital
- 3rd and Final idea: 3 separate PCB’s

_120 VAC
How to split the power?
$-5 \mathrm{~V}$
\qquad

Power Distribution

Linear Vs. Switching Regulator

- A switching regulator was chosen over a linear regulator because...
- When switched off, it dissipates close to no power
- Can be a boost, buck, or an inverter
- Little heat loss, efficient
- Can be used for DC to DC conversion
- MC34063 was chosen because
- Capable of step-up/down/inverting
- Has a wide voltage supply range
- A full bridge rectifier circuit may still be used to help with noise

Success/Difficulties

- Difficulties
- Design implementation
- Power Distribution
- PCB Design
- Linear vs Switching
- Successes
- Final Design idea
- PCB Design close to completion

Administrative Content

Administrative Content

LED MFD and Power Supply Progress

Current Build Budget

LED MFD Breakdown		
Part	Qty	Price
PCM3060	1	$\$ 6.15$
ATmega2561	1	$\$ 12.07$
TLC5955	4	$\$ 24.08$
RGB LED	64	$\$ 24.32$
PCB	1	$\$ 52$
Total		$\$ 118.62$

Audio Unit Breakdown		
Part	Qty	Price
OPA1641	4	$\$ 11.52$
OPA1642	1	$\$ 4.20$
LM13700	1	$\$ 1.36$
R, C, \& Diodes		$\cong \$ 10$
3PDT	4	$\$ 14.36$
PCM3060	1	$\$ 18.45$
STM32F405ZGT6	1	$\$ 12.29$
IS61WV51216BLL-10T	1	$\$ 14.64$
LI	1	$\$ 4.50$
WM8731	1	$\$ 10.99$
RRLCD204WB	2	$\$ 70$
PCB	$\$ 172.28$	
Total		

Questions?

